

2.7" Monochrome 128x64 OLED Display

Module

Created by lady ada

https://learn.adafruit.com/2-7-monochrome-128x64-oled-display-module

Last updated on 2022-12-01 02:35:41 PM EST

©Adafruit Industries Page 1 of 26

3

6

7

9

14

15

16

17

25

26

Table of Contents

Overview

Pinouts

• Power Pins

• Signal Pins

• Remaining Pins

Assembly

• Changing "modes"

• 8-Bit "6800" mode

• SPI Mode

Arduino Wiring & Test

• SPI Wiring

• Level Shifter Wiring

• 3.3V Capacitor

• Download Libraries

• Running the Demo

• Changing Pins

• Using Hardware SPI

Using Adafruit GFX

CircuitPython Wiring

• Adafruit OLED Display I2C Wiring

• Adafruit OLED Display SPI Wiring

CircuitPython Setup

• CircuitPython Installation of DisplayIO SSD1325 Library

• Code Example Additional Libraries

CircuitPython Usage

• I2C Initialization

• Changing the I2C address

• SPI Initialization

• Example Code

• Where to go from here

F.A.Q.

Downloads

• Datasheets:

©Adafruit Industries Page 2 of 26

Overview

If you've been diggin' our monochome OLEDs but need something bigger, this display

will delight you. These displays are 2.7" diagonal, and very readable due to the high

contrast of an OLED display. This display is made of 128x64 individual white OLED

pixels, each one is turned on or off by the controller chip. Because the display makes

its own light, no backlight is required. This reduces the power required to run the

OLED and is why the display has such high contrast; we really like this graphic display

for its crispness!

©Adafruit Industries Page 3 of 26

The driver chip, SSD1325 can communicate in two ways: 8-bit or SPI. Personally we

think SPI is the way to go, only 4 or 5 wires are required. The OLED itself requires a

3.3V power supply and 3.3V logic levels for communication. We include a

breadboard-friendly level shifter that can convert 3V or 5V down to 3V, so it can be

used with 5V-logic devices like Arduino.

The power requirements depend a little on how much of the display is lit but on

average the display uses about 50-150mA from the 3.3V supply. Built into the OLED

driver is a simple switch-cap charge pump that turns 3.3V into a high voltage drive for

the OLEDs.

©Adafruit Industries Page 4 of 26

Each order comes with one assembled OLED module with a nice bezel and 4

mounting holes. The display is 3V logic & power so we include a HC4050 level shifter.

We also toss in a 220uF capacitor, as we noticed an Arduino may need a little more

capacitance on the 3.3V power supply for this big display! This display does not come

with header attached but we do toss in a stick of header you can solder on. Also, the

display may come in 8-bit mode. You can change modes from 8-bit to SPI with a little

soldering, check out the tutorial for how to do so. ()

Getting started is easy! We have a detailed tutorial and example code in the form of

an Arduino library for text and graphics. () You'll need a microcontroller with more than

1K of RAM since the display must be buffered. The library can print text, bitmaps,

pixels, rectangles, circles and lines. It uses 1K of RAM since it needs to buffer the

entire display but its very fast! The code is simple to adapt to any other

microcontroller.

©Adafruit Industries Page 5 of 26

file:///home/2-7-monochrome-128x64-oled-display-module/assembly
file:///home/2-7-monochrome-128x64-oled-display-module/assembly
file:///home/2-7-monochrome-128x64-oled-display-module
file:///home/2-7-monochrome-128x64-oled-display-module

Pinouts

The pins on these modules are not well marked, but the one on left is #1 and the pins

increment in order until the one on the very right, #20

Power Pins

Pin #1 is power and signal Ground

Pin #2 is 3V Power In - provide 3V with 100-150mA current capability

Pin #3 is not used, do not connect to anything

Signal Pins

Pin #4 is DC - the data/command pin. This is a 3V logic level input pin and is

used for both SPI and 8-bit connections

Pin #5 is WR - the 8-bit write pin. This is a 3V logic level input pin and is used for

8-bit connections. Do not connect if using SPI

Pin #6 is RD - the 8-bit read pin. This is a 3V logic level input pin and is used for

8-bit connections. Do not connect if using SPI

Pin #7 is Data0 - this pin is the SPI Clock pin and the 8-bit data bit 0 pin. This is

a 3V logic level input pin when used with SPI, and an input/output when used in

8-bit.

Pin #8 is Data1 - this pin is the SPI Data In pin and the 8-bit data bit 1 pin. This is

a 3V logic level input pin when used with SPI, and an input/output when used in

8-bit.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 26

Pins #9-14 are Data2-7 - Used for 8-bit mode. These is a 3V input/output when

used in 8-bit. Do not connect if using SPI

Pin #15 is CS - the chip select pin. This is a 3V logic level input pin and is used

for both SPI and 8-bit connections

Pin #16 is RESET - the reset pin. This is a 3V logic level input pin and is used for

both SPI and 8-bit connections

Remaining Pins

Pins #17-19 are not connected, do not use

Pin #20 is the 'frame ground' pin and is connected to the metal case around the

OLED, you can connect to ground or leave floating.

Assembly

Changing "modes"

These modules can be used in SPI or 8-Bit mode. Somewhat annoyingly, the only way

to switch modes is to desolder/solder jumpers on the back of the modules.

8-Bit "6800" mode

Your module probably came with this setting by default. The R20 and R18 resistors are

in place and the R21 and R19 are missing.

•

•

•

•

•

©Adafruit Industries Page 7 of 26

SPI Mode

This is the mode you likely want to be in. You'll need to remove the R18 and R20

resistors by heating up the resistor with a soldering iron and maybe even melting a

little solder on. Then remove the resistor and solder in R19 and R21 either by placing

the resistors there (or, really, any 0-10K 0805 resistor) or a piece of wire.

©Adafruit Industries Page 8 of 26

Arduino Wiring & Test

We will demonstrate using this display with an Arduino UNO compatible. If you are

using a 3V logic device you can skip the level shifter and connect direct from the

microcontroller to display. You can also use another kind of level shifter if you like.

Any microcontroller with 4 or 5 pins can be used, but we recommend testing it out

with an UNO before you try a different processor.

SPI Wiring

Since this is a SPI-capable display, we can use hardware or 'software' SPI. To make

wiring identical on all Arduinos, we'll begin with 'software' SPI. The following pins

should be used:

Connect Pin #1 to common power/data ground line (black wires)

Connect Pin #2 to the 3V power supply on your Arduino. (red wires)

Skip pin #3

Connect Pin #4 (DC) to digital #8 via the level shifter (white wires) any pin can

be used later

Don't forget you have to set the display to SPI mode, see the Assembly step on

how to do that!

•

•

•

•

©Adafruit Industries Page 9 of 26

Connect Pin #7 (SCLK) to digital #13 via the level shifter (blue wires) any pin can

be used later

Connect Pin #8 (DIN) to digital #11 via the level shifter (green wires) any pin can

be used later

Skip pins #9-14

Connect Pin #15 (CS) to digital #10 via the level shifter (yellow wires) any pin can

be used later

Connect Pin #16 (RST) to digital #9 via the level shifter (orange wires) any pin

can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if you

desire, or change the pins to any others.

Level Shifter Wiring

You will also want to power the HC4050 level shifter by connecting pin #1 to 3V (the

red wire) and pin #8 to ground (the black wire)

3.3V Capacitor

We also include a 220uF capacitor with your order because we noticed that the 3V

line can fluctuate a lot when powered via an Arduino's 3.3V regulator. We really

recommend installing it. Clip the leads on this capacitor and connect the negatve pin

to GND and the positive pin to 3V

Download Libraries

To begin reading sensor data, you will need to download Adafruit_SSD1325 () and Ad

afruit_GFX () from the Arduino library manager.

Open up the Arduino library manager:

•

•

•

•

•

©Adafruit Industries Page 10 of 26

https://github.com/adafruit/Adafruit_SSD1325_Library
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

Search for the Adafruit SSD1325 library and install it:

Search for the Adafruit GFX library and install it:

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this one automatically).

We also have a great tutorial on Arduino library installation at: http://

learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Running the Demo

After restarting the Arduino software, you should see a new example folder called Ad

afruit_SSD1325 and inside, an example called ssd1325test

©Adafruit Industries Page 11 of 26

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Now upload the sketch to your Arduino. That's pretty much it! You should see

immediate update of the display.

If nothing shows up at all, make sure you have your wiring correct, we have a diagram

above you can use. Also, check that you converted the module to "SPI" mode (see the

Assembly) step on how to do that

©Adafruit Industries Page 12 of 26

Changing Pins

Now that you have it working, there's a few things you can do to change around the

pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and cant be

changed. But you can change to software SPI, which is a bit slower, and that lets you

pick any pins you like. Find these lines:

// If using software SPI, define CLK and MOSI

#define OLED_CLK 13

#define OLED_MOSI 11

// These are neede for both hardware & softare SPI

#define OLED_CS 10

#define OLED_RESET 9

#define OLED_DC 8

Change those to whatever you like!

Using Hardware SPI

If you want a little more speed, you can 'upgrade' to Hardware SPI. Its a bit faster,

maybe 2x faster to draw but requires you to use the hardware SPI pins.

SPI CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats

Digital 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI

Connections for more details ())

SPI DATA IN connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based,

thats Digital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI

Connections for more details ())

To enable hardware SPI, look for these lines:

// this is software SPI, slower but any pins

Adafruit_SSD1325 display(OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);

// this is for hardware SPI, fast! but fixed oubs

//Adafruit_SSD1325 display(OLED_DC, OLED_RESET, OLED_CS);

Comment out the top line and uncomment the bottom line

•

•

©Adafruit Industries Page 13 of 26

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Using Adafruit GFX

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics

functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to

easily be adapted between display types with minimal fuss…and any new features,

performance improvements and bug fixes will immediately apply across our complete

offering of displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,

text, etc.

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-

library () It covers the latest and greatest of the GFX library!

Since this is a 'buffered' display, dont forget to call the "display()" object function

whenever you want to update the OLED. The entire display is drawn in one data

burst, so this way you can put down a bunch of graphics and display it all at once.

©Adafruit Industries Page 14 of 26

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

CircuitPython Wiring

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First

assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

There's no SSD1305 or SSD1325 Large OLED Fritzing objects, so we sub'd a

Graphic LCD in

©Adafruit Industries Page 15 of 26

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Adafruit OLED Display I2C Wiring

OLED Pin #1 to Microcontroller GND

OLED Pin #2 to Microcontroller 3.3V

OLED Pin #4 to Microcontroller GND

OLED Pin #7 to Microcontroller SCL

10K resistor from SCL to 3.3V

OLED Pin #8 to Microcontroller SDA

OLED Pin #9 to Microcontroller SDA

10K resistor from SDA to 3.3V

OLED Pin #16 to Microcontroller D9

Adafruit OLED Display SPI Wiring

OLED Pin #1 to Microcontroller GND

OLED Pin #2 to Microcontroller 3.3V

OLED Pin #4 to Microcontroller D6

OLED Pin #7 to Microcontroller SCK

OLED Pin #8 to Microcontroller MOSI

OLED Pin #15 to Microcontroller D5

OLED Pin #16 to Microcontroller D9

Download the Fritzing Object

CircuitPython Setup

CircuitPython Installation of DisplayIO

SSD1325 Library

To use the SSD1325 OLED with your Adafruit CircuitPython board you'll need to install

the Adafruit CircuitPython DisplayIO SSD1325 () module on your board.

©Adafruit Industries Page 16 of 26

https://learn.adafruit.com//assets/84642
https://learn.adafruit.com//assets/84642
https://learn.adafruit.com//assets/83826
https://learn.adafruit.com//assets/83826
https://cdn-learn.adafruit.com/assets/assets/000/083/878/original/circuitpython_spi_wiring.fzz?1573231575
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1325

First make sure you are running the latest version 5.0 or later of Adafruit

CircuitPython () for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

If you choose, you can manually install the libraries individually on your board:

adafruit_displayio_ssd1325

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_displayio_ssd1325.mpy file copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

the the Adafruit CircuitPython Display Text library so the code didn't get overly

complicated. Go ahead and install that in the same manner as the driver library by

copying the adafruit_display_text folder over to the lib folder on your CircuitPython

device.

CircuitPython Usage

It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1325 () module.

This module allows you to easily write Python code to control the display.

To demonstrate the usage, we'll initialize the library and use Python code to control

the OLED from the board's Python REPL.

•

Displayio is only available on express board due to the smaller memory size on

non-express boards.

©Adafruit Industries Page 17 of 26

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_SSD1325

I2C Initialization

If your display is connected to the board using I2C you'll first need to initialize the I2C

bus. First import the necessary modules:

import board

Now for run this command to create the I2C instance using the default SCL and SDA

pins (which will be marked on the board's pins if using a Feather or similar Adafruit

board):

i2c = board.I2C()

After initializing the I2C interface for your firmware as described above, you can

create an instance of the I2CDisplay bus:

import displayio

import adafruit_ssd1325

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

Finally, you can pass the display_bus in and create an instance of the SSD1325 I2C

driver by running:

display = adafruit_ssd1325.SSD1325(display_bus, width=128, height=64)

Now you should be seeing an image of the REPL. Note that the last two parameters to

the SSD1325 class initializer are the width and height of the display in pixels. Be sure

to use the right values for the display you're using!

Changing the I2C address

If you connect Pin #4 of the OLED to +3V instead of Ground the I2C address will be

different different (0x3d):

display_bus = displayio.I2CDisplay(i2c, device_address=0x3d)

display = adafruit_ssd1325.SSD1325(display_bus, width=128, height=64)

At this point the I2C bus and display are initialized. Skip down to the example code

section.

©Adafruit Industries Page 18 of 26

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI

bus.

If you're using a microcontroller board, run the following commands:

import board

import displayio

import adafruit_ssd1325

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

tft_reset = board.D9

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,

 reset=tft_reset, baudrate=1000000)

display = adafruit_ssd1325.SSD1325(display_bus, width=128, height=64)

The parameters to the FourWire initializer are the pins connected to the

display's DC, CS, and reset. Because we are using keyword arguments, they can be in

any position. Again make sure to use the right pin names as you have wired up to

your board!

Note that the last two parameters to the SSD1325 class initializer are the width and h

eight of the display in pixels. Be sure to use the right values for the display you're

using!

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This test will initialize the display using displayio and draw a solid white

background, a smaller black rectangle, and some white text.

"""

import board

import displayio

import terminalio

from adafruit_display_text import label

import adafruit_ssd1325

displayio.release_displays()

Use for SPI

spi = board.SPI()

oled_cs = board.D5

©Adafruit Industries Page 19 of 26

oled_dc = board.D6

display_bus = displayio.FourWire(

 spi, command=oled_dc, chip_select=oled_cs, baudrate=1000000, reset=board.D9

)

Use for I2C

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c)

WIDTH = 128

HEIGHT = 64

BORDER = 8

FONTSCALE = 1

display = adafruit_ssd1325.SSD1325(display_bus, width=WIDTH, height=HEIGHT)

Make the display context

splash = displayio.Group()

display.show(splash)

color_bitmap = displayio.Bitmap(display.width, display.height, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0xFFFFFF # White

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(

 display.width - BORDER * 2, display.height - BORDER * 2, 1

)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0x000000 # Black

inner_sprite = displayio.TileGrid(

 inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER

)

splash.append(inner_sprite)

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0x888888)

text_width = text_area.bounding_box[2] * FONTSCALE

text_group = displayio.Group(

 scale=FONTSCALE,

 x=display.width // 2 - text_width // 2,

 y=display.height // 2,

)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

while True:

 pass

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI, displayio , terminalio for the font, a label , and

the adafruit_ssd1325 driver.

import board

import displayio

import terminalio

from adafruit_display_text import label

import adafruit_ssd1325

©Adafruit Industries Page 20 of 26

Next we release any previously used displays. This is important because if the

microprocessor is reset, the display pins are not automatically released and this

makes them available for use again.

displayio.release_displays()

If you're using SPI, you would use this section of code. We set the SPI object to the

board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We set the

OLED's CS (Chip Select), and DC (Data/Command) pins. We also set the display bus to

FourWire which makes use of the SPI bus. The SSD1325 needs to be slowed down to

1MHz, so we pass in the additional baudrate parameter. We also pass board.D9 as

the reset pin. If this differs for you, you could change it here.

spi = board.SPI()

oled_cs = board.D5

oled_dc = board.D6

display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,

 baudrate=1000000, reset=board.D9)

If you're using I2C, you would use this section of code. We set the I2C object to the

board's I2C with the easy shortcut function board.I2C() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We also set the

display bus to I2CDisplay which makes use of the I2C bus.

Use for I2C

i2c = board.I2C()

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=oled_reset)

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have WIDTH , which is the display width, HEIGHT , which is the display

height and BORDER , which we will explain a little further below. FONTSCALE will be

the multiplier for the font size. If your display is something different than these

numbers, change them to the correct setting. For instance, you may want try changing

the border size to 5 if you have a 128x32 display.

WIDTH = 128

HEIGHT = 64 # Change to 32 if needed

BORDER = 8

FONTSCALE = 1

Finally, we initialize the driver with a width of the WIDTH variable and a height of the

HEIGHT variable. If we stopped at this point and ran the code, we would have a

©Adafruit Industries Page 21 of 26

terminal that we could type at and have the screen update. You may notice Blinka is

grayscale.

display = adafruit_ssd1325.SSD1325(display_bus, width=WIDTH, height=HEIGHT)

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)

display.show(splash)

Next we create a Bitmap that is the full width and height of the display. The Bitmap is

like a canvas that we can draw on. In this case we are creating the Bitmap to be the

same size as the screen, but only have one color. Although the Bitmaps can handle

up to 256 different colors, we only need one. We create a Palette with one color and

set that color to 0xFFFFFF , which happens to be white. If were to place a different

color here, displayio handles color conversion automatically, so it would end up

some shade of gray.

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x888888

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

©Adafruit Industries Page 22 of 26

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

Next we will create a smaller black rectangle. The easiest way to do this is to create a

new bitmap that is a little smaller than the full screen with a single color of 0x000000 ,

which is black, and place it in a specific location. In this case, we will create a bitmap

that is 5 pixels smaller on each side. This is where the BORDER variable comes into

use. It makes calculating the size of the second rectangle much easier. The screen

we're using here is 128x64 and we have the BORDER set to 8 , so we'll want to

subtract 16 from each of those numbers.

We'll also want to place it at the position (8, 8) so that it ends up centered.

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(display.width - BORDER * 2, display.height - BORDER

* 2, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0x000000 # Black

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=BORDER, y=BORDER)

splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's

what it looks like now. Because of the way the OLED scans, you may notice the colors

aren't distributed evenly.

©Adafruit Industries Page 23 of 26

Next let's add a label that says "Hello World!" on top of that. We're going to use the

built-in Terminal Font and scale it up by a factor of two, which is what we

have FONTSCALE set to. To scale the label only, we will make use of a subgroup,

which we will then add to the main group.

We create the label first so that we can get the width of the bounding box and

multiply it by the FONTSCALE . This gives us the actual with of the text.

Labels are automatically centered vertically, so we'll place it at half the display height

for the Y coordinate, and we calculate the X coordinate to horizontally center the

label. We use the // operator to divide because we want a whole number returned

and it's an easy way to round it. Let's go with some gray text, so we'll pass it a value of

0x888888 . This display handles grayscale and this color is about halfway between

0x000000 and 0xFFFFFF .

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF)

text_width = text_area.bounding_box[2] * FONTSCALE

text_group = displayio.Group(max_size=10, scale=FONTSCALE, x=display.width // 2 -

text_width // 2,

 y=display.height // 2)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

©Adafruit Industries Page 24 of 26

while True:

 pass

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio ()

F.A.Q.

How come sometimes I see banding or dim areas on the

OLED?

These OLEDs are passively drawn, which means that each line is lit at once. These

displays are fairly inexpensive and simple, but as a tradeoff the built in boost

converter has to drive all the OLED pixels at once. If you have a line with almost all

the pixels lit it wont be as bright as a line with only 50% or less lit up.

The display works, because I can see the splash screen,

but when I draw to the display nothing appears!

Don't forget you must call .display() to actually write the display data to the display.

Unlike many of our TFTs, the entire display must be written at once so you should

print all your text and draw all your squares, then call display()

©Adafruit Industries Page 25 of 26

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

How do I get rid of the splash screen?

Open up Adafruit_SSD1325.cpp in the libraries/Adafruit_SSD1325 folder and find

these lines

static uint8_t buffer[SSD1325_LCDHEIGHT * SSD1325_LCDWIDTH / 8] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00,

....

0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,

0x01, 0x01

};

and delete everything after static uint8_t buffer[SSD1325_LCDHEIGHT *

SSD1325_LCDWIDTH / 8] = {

and before };

Downloads

Datasheets:

SSD1325 OLED driver () datasheet, this is the chip in the module that converts

SPI/8-bit commands to OLED control signals

Specifications for the UG-2864ASWIG01 OLED display screen in the module ()

We also have a datasheet for the yellow module version of this display which is

probably helpful and has almost identical specifications ()

Mechanical specifications for the Yellow version of the OLED display itself ()

•

•

•

•

©Adafruit Industries Page 26 of 26

http://www.adafruit.com/datasheets/SSD1325.pdf
http://www.wisechip.com.tw/style/frame/templates15/product_detail.asp?lang=2&customer_id=2641&name_id=128417&content_set=color_1&Directory_ID=70278&id=380065
http://www.adafruit.com/datasheets/UG-2864ASYDT01.pdf
http://www.adafruit.com/datasheets/UG-2864ASYDT01.pdf
http://www.adafruit.com/datasheets/UG-2864ASYIG01%20mech.pdf

	2.7" Monochrome 128x64 OLED Display Module
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Wiring & Test
	Using Adafruit GFX
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Usage
	F.A.Q.
	Downloads

	Overview
	Pinouts
	Power Pins
	Signal Pins
	Remaining Pins
	Assembly
	Changing "modes"
	8-Bit "6800" mode
	SPI Mode
	Arduino Wiring & Test
	SPI Wiring
	Level Shifter Wiring
	3.3V Capacitor

	Download Libraries
	Running the Demo
	Changing Pins
	Using Hardware SPI
	Using Adafruit GFX
	CircuitPython Wiring
	Adafruit OLED Display I2C Wiring
	Adafruit OLED Display SPI Wiring

	CircuitPython Setup
	CircuitPython Installation of DisplayIO SSD1325 Library
	Code Example Additional Libraries

	CircuitPython Usage
	I2C Initialization
	Changing the I2C address

	SPI Initialization
	Example Code
	Where to go from here

	F.A.Q.
	How come sometimes I see banding or dim areas on the OLED?
	The display works, because I can see the splash screen, but when I draw to the display nothing appears!
	How do I get rid of the splash screen?

	Downloads
	Datasheets:

